

Challenges and Solutions for Multi-Master / Multi-Slave PMBus Systems

Peter James Miller

Texas Instruments

APEC - 28 March 2017

What is a Multi-Master PMBus System?

- In SMBus a "Master" is any device that initiates a digital transmission
 - Drives the CLK through entire transmission
 - Drives DATA during Address and Command, may drive/read DATA during the data phase of a transmission
- Only 1 "Master" at a given time
 - A System "Host" for Telemetry
 - A Powered Device for AVS, Configuration
 - A System Host for Fault Management

Why do Multi-Master systems exist?

- System Host plus one or more powered devices using PMBus to actively control or monitor their power supply
 - Adaptive Voltage Scaling (AVS) through PMBUS (not AVSBus)
 - Adaptive Power
 - Scaling Operating Modes based on temperature, power, etc
- Multiple System Hosts
 - Separate Telemetry, Configuration and/or Fault Handling
 - External Interface with Internal Bus

Challenges of Multi-Master Systems – Slave Side

- Host Notify Protocol
 - Slave becomes a Master in response to a Fault
- Paged Devices
 - How does the Master know the "active" page?
 - Especially problematic when "Masters" may alternate

Challenges of Multi-Master Systems – Master Side

- Master Side Challenges
 - Transmission Collisions
 - SMBUS Bit-Arbitration
 - Coordinating Bus Traffic
 - Time Division Multiplexing, Defined Idle Delay, Shared Interrupt
 - Legacy Devices
 - May not support Multi-Master solutions
 - May not fully support bit arbitration

Challenges of Multi-Master Systems – System Side

- System Side Challenges
 - Bus Congestion
 - Repeated Collisions

Solutions to Multi-Master Systems – Slaves

- Paged Devices
 - Use PAGE_PLUS_READ / PAGE_PLUS_WRITE
 - Changes current page, so must be used on every command
 - Use devices that allow pages to be assigned unique Slave Addresses
 - Avoids using pages and the problems with pages
- Host Notify Protocol
 - Forces Multi-Master System
 - Slave device becomes Master during fault

Solutions to Multi-Master Systems – Masters

- Use 1 System Host as a Bridge
 - Avoid the Multi-Master system altogether
 - Host needs multiple communications ports
 - Adds delay to Communication Reponses
- Determine who gets to talk next
 - Shared Interrupt uses 1 I/O from each powered device
 - Some powered devices may not support I/O control
 - Time Division Multiplexing Everyone gets a turn
 - Programmable Idle Delay
 - Staggers start devices in start time
 - Idle delay sets bus priority
 - Matched Delays will default to Slave Address Arbitration

Resolving Conflicts

- Collision Resolution
 - I2C / SMBus Bit Arbitration
 - Bit Arbitration Loss
 - Reduced Idle time to grant Priority for next transmission
 - Random Idle time to prevent repeated collisions
- Interrupting In-Process Command
 - SMBus Time-Out = 25ms!

Thank you! Questions?

